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Industry Summary:  

Innovation of cost effective methods for eliminating the PRRSv from individual herds has 
stimulated hope that the industry may someday eliminate the virus from the U.S.  However, 
exploiting this innovation has been hampered by the industries lack of progress on 
preventing the frequent transmission of the virus from one herd to another.  Recently, 
several regional elimination projects have been initiated by producers and veterinarians to 
overcome this hurdle. These projects are efforts to reduce the frequency of transmission from 
one herd to another by better understanding what the PRRS virus is doing in the region, 
improving biosecurity and reducing the prevalence of the virus in the region.  Surveillance is 
a critical element of all of these projects for better understanding what the virus is doing in 
the region and for measuring progress.  
 
Although sequential testing is widely needed and used in practice for PRRSv surveillance, 
there is little guidance on how frequently to sample. This study provides cost effective 
methods for PRRSv surveillance including guidance on the frequency of sampling with a firm 
theoretical basis. The methodologies we develop can be expected to provide a standard 
framework for design and analysis of PRRSv surveillance studies. We study the disease 
progression and transmission of PRRS through a proposed statistical model and provide 
rigorous, detailed, data-based statistical framework for design and analysis of PRRS 
surveillance. The proposed adaptive design will help detect PRRS outbreak earlier.  The 
methodologies developed are essential for effective control and elimination of PRRS virus on 
individual farms and for regional elimination projects. 
 
We develop a web-based interface called SSF (Sample Size and Frequency), built upon the 
Shiny web-application framework. SSF provides easy-to-use and instantly displayed 
calculation of sample size and frequency based on a custom-defined scheme of their own 
choosing. 
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Scientific Abstract:   
In animal disease testing at the population level, traditional calculation methods relate the 
power of detection to sample size using probability models, e.g., binomial distribution.1  These 
probability models are based on the assumption that all individuals have the same chance of 
acquiring disease. In contemporary animal production systems, however, a hierarchical 
structure exists.  For example, a farm may consist of multiple buildings and each building 
usually contains multiple pens of animals.  Farm sample size may be calculated using classic 
formulas, but there is a lack of guidance about how to subsequently allocate sampling across 
strata.  Despite the fact that strata are not necessarily homogenous in terms of disease status, 
it is common for samples to be collected from selected strata, leaving other strata unsampled: 
(1) for convenience, (2) for lack of formal guidance regarding sample allocation across strata, 
and (3) under the assumption that certain strata are most representative of the farm's disease 
status.  For optimal disease detection at the farm level, a mathematically more intuitive way to 
allocate samples would be even distribution across the different strata.  But does sampling 
from one stratum vs. multiple strata differ in the power of disease detection?  If multiple strata 
sampling is preferable, is even distribution of samples across the strata the optimal strategy?  If 
not, what are the formulas for sample size calculation and allocation for populations with a 
two-level structure?  The objective of this project is to address these questions from a 
mathematical perspective. 
A pivotal part of disease surveillance is the repeated disease diagnostic testing to monitor the 
status of the disease. Despite their importance, little work has been done to address the 
common questions of sampling frequency as well as sample size for repeated testing. We 
develop mathematical relationships between the sample size, sample frequency and the other 
parameters in disease detection, ie, the prevalence, the desired detection time and the desired 
power of detection. We also develop a web application called SSF (Sample Size and Frequency), 
built upon the Shiny web-application framework. SSF provides easy-to-use and instantly 
displayed calculation of sample size and frequency based on a custom-defined scheme of their 
own choosing. 

 
Introduction:   

Porcine reproductive and respiratory syndrome (PRRS), caused by the PRRS virus, is a major 
health, production and financial problem for swine producers in nearly every country. PRRS 
costs the United States swine industry around $560 million annually (Neumann et al., 2005). 
PRRS outbreaks in China caused pork prices to increase by 85 percent in 2006 (Li et al., 2007). 
Surveillance of PRRS has been of great interest. 
A pivotal part of disease surveillance is the sequential disease diagnostic testing, which 
establishes patterns of disease prevalence progression for the study population. In design of 
sequential diagnostic testing, two questions have to be answered: 1. How many animals need to 
be tested? and 2. How often does the testing need to be done? Although there exist classic 
approaches to address the first, sample size question for testing at a single time point, little has 
been done to address the second, frequency question or answer the two questions together. 
Sample size calculation for disease freedom testing at a single time point has been extensively 
used in designing infectious disease studies. For disease testing with imperfect diagnostic 
tests, Cameron and Baldock (1998) developed mathematical formulas to calculate samples 
sizes, through probabilistic modeling of the relationship among population size, disease 
prevalence, diagnostic test sensitivity and specificity, hypothesis testing confidence and power, 
and sample size. Cannon (2001) derived fast approximation formulas for the above calculation. 
Such works provide a rigorous theoretical basis for design and analysis of cross-sectional 
animal disease testing studies. 
In disease surveillance, series of testing needs to be carried out to establish trend/history of 
disease status. In a surveillance study, the confidence in disease status is not only related to 
sample size at each testing time, but also the frequency of repeating the diagnostic testing. For 
example, in the recent PRRS-free certification pilot project protocol of the Canadian Swine 
Health Board, testing frequency has a direct positive relationship with the farm’s score to gain 
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PRRS-free certification. Unfortunately very little work has been done to address the sampling 
frequency question in design of animal disease surveillance. The only work that the 
investigators are aware of is the simulation based method by Rovira et al. (2007). Such 
simulation-based methods, however, are limited by the simulation size, computing speed, lack 
of exactness and lack of rigorous theoretical basis. 
The theory of sequential testing in surveillance can be traced back to quality control studies in 
engineering, where the question of interest was fault detection (Lai 1995). Yet such quality 
control studies do not involve transmission of disease pathogens, thus are not appropriate for 
surveillance of infectious disease. In human medicine, statistical algorithms have been 
proposed to analyze infectious disease surveillance data (Farrington et al. 1996), but not much 
work has been done on the design aspect. This is because human diagnostic testing is on a 
voluntary basis, as patients intentionally seek disease diagnoses and treatments. In animal 
disease surveillance, testing is initiated and costs are paid by producers thus the design needs 
to be cost-efficient. 

  
Objectives:   
 The project will focus on development of sequential sampling schemes for PRRSv surveillance, 

the analysis of sequentially sampled PRRSv surveillance data and adaptive designs to rapidly 
detect change in disease prevalence based on analysis of present data. These algorithms will be 
made available to producers and swine veterinary practitioners in a user-friendly web-based 
application. 

 
Materials & Methods:   

1. Spatial Sample Allocation 
 Two strategies for sample allocation with perfect tests: 
 In a population with k strata, e.g., a site with k buildings, denote the disease prevalence in 

each stratum by i
p

, i =1,…,k.  Let i
n

 be the sample size for the i’th stratum, e.g., pen within a 

building, in a certain sampling strategy.  The number of diseased animals i
m
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i’th stratum is commonly modeled using a binomial distribution, 
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Two strategies for sample allocation with imperfect tests 
 Most diagnostic tests used in disease detection are imperfect.  Denote the sensitivity of a 

diagnostic test by θ, where θ is not necessarily 1.  Then, not all diseased animals sampled will 

be test positive.  Denote the number of diagnostic test positive animals by i
x

, i =1,…,k.  Then 

),(~| 
iii

mBinmx .  Together with the model ),(~
iii

pnBinm , it can be derived that the 

distribution of i
x

 unconditional on i
m

is 
),(~ 

iii
pnBinx

. Similar to the derivation in the case of 
a perfect diagnostic test in section 2.1, the power formulas for the two sampling strategies can 
be derived as follows: 

 Method1: 

  
n

k

n

kk
ppxxPxxP )1...()1(1)0...(1)1...(

111
 

              (4) 
 Method2: 

  
))1(1(

k

1
...))1(1(

k

1
 )0(1)1(

1

kn

k

kn
ppxPxP  

 

  





k

i

kn

i
p

k 1

)1(
1

1 

                                                   (5) 
 
 Optimal strategy for sample allocation 
 For one-level population disease detection, the common goal can be stated as to test against a 

certain non-zero disease prevalence p>0.  Analogically, the goal of a two-level disease detection 
can be formed as testing again a distribution of the disease prevalence, p~f(p), with the mean 
prevalence E(p)>0 and certain heterogeneity Var(p)>0.  Under the assumption that the 

prevalences follow such distribution of heterogeneity, )(~,...,
1

pfpp
k

, we can derive the power 

of detection as a function of the sample allocation 
i

n , i=1,2,…,k: 

 
kk

n

k

n
dpdppfpfpp k ...)(...)()1...()1(1 1)  X +…+ P(X

111k1

1

  
 

 
k

i

nn

k

i

ii

n

i

pEpE

dppfp

)1(...)1(1

)()1(1

1

1

1

0







  


                                                   (6) 
  
 2. Sample Size and Frequency for Repeated Sampling 

 Assume that there are N sampling units in the population among which M are diseased. Thus 

the population disease prevalence is M/N. Suppose the sampling scheme is to sample n units 

at each time, and sample every d days. Here we derive the relationship between the time of 

detection, T, and the sampling parameters n and d. Let m denote the random number of 

positive pens being sampled, then m has a hypergeometric distribution with probability mass 

function
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 The chance of detection at a single time might be low for detection of disease of low prevalence 

with small sample size n. With repeated testing every d days, the chance of detection will 

increase. The time of detection T, can be shown to follow a geometric distribution with 

probability   pptTP
dt /

1)(  , where t = 0, d, 2d, 3d, … and p = ) timesingle aat Detection (P in 
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formula (1). Based on this, we can derive the cumulative chance of detection by certain time t 
to be: 

      1/

11) by timeDetection (



dt

ptP ,       (8) 

 where  dt /  indicates the largest integer not greater than t/d. The expected time of detection is 

derived to be: 

    ppdTE /1)(  .          (9) 

 Formula (8) shows that chance of detection by certain time is an increasing function of sample 

size n and sample frequency 1/d. In practice, if we want to detect the disease with certain 
chance by a desired time, we can use formula (8) to calculate the required combination of 
sampling time and frequency.   

 We have also developed a web application called SSF (Sample Size and Frequency), built upon 
the Shiny web-application framework. SSF is an application of Shiny, a framework for writing 
web-applications in the R language. SSF uses this framework to provide quick and convenient 
calculations of sample size and frequency for design of repeated diagnostic testing. For 
instance, when the user of SSF changes a value of parameter in setting, such as the 
prevalence, the result tables and plots will instantly update to reflect the new setting. SSF is 
currently hosted on the server provided by Iowa State University. 

 Similar to other Shiny applications, SSF consists of three primary UI components, the 
Configuration Panel, the Tab Panel, and the Results Panel, as shown in Figure 1. The 
Configuration Panel is located along the left-hand column. This panel allows for various 
parameters to be adjusted. The top of the right panel is the Tab Panel, which contains two tabs 
corresponding to table and plot, respectively. The bottom of the right panel is the Results 
panel, which will contain the results of the analysis depending on the tab and configuration 
options selected. 

Figure 1. Screenshot of SSF, with tabular results. 

 
 
 
Results:   

1. Spatial Sample Allocation 
Comparison of two strategies for sample allocation with perfect tests 
Comparison between formulas (1) and (2) reveals a direct relationship between the power of 
Method 1 and Method 2:  

Theorem 1. Method 1 is superior in detection power to Method 2. 
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Proof.  By mathematical theory, the arithmetic mean is no less than the geometric mean.  Thus 
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The equality between arithmetic mean and geometric mean holds if and only if 
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all the strata have exactly the same prevalence.  This is not a practical assumption.  Thus 
generally, Method 1 should be preferred to Method 2 for the detection of disease in a two-level 
structure.  
Comparison of the two strategies for detection with imperfect tests 

Theorem 2.  Method 1 is superior in detection power to method 2 when an imperfect diagnostic 
test is used. 
Proof.  By mathematical relationship between the arithmetic mean and the geometric mean, 
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  .  Theorem 2 is proved.   

Again, the equality holds if and only if all strata have exactly the same prevalence, which is not 
a practical assumption. Therefore, Method 1 is always equal to, or better than, Method 2. 
Optimal strategy for sample allocation 
Sections 2.1 and 2.2 compared two specific strategies and proved that even allocation (Method 
1) is better.  Is Method 1 the best among all sample allocation strategies?  Intuitively, if we 

knew the exact prevalence values, 
k

pp ,...,
1

, then we could improve the power of Method 1 by 

taking all samples from the most prevalent stratum.  However, if we knew the exact 
prevalences, it would be unnecessary to test in the first place.  In practice, it can only be 
assumed that prevalence varies among strata.  

Theorem 3.  In case )(~,...,
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Proof.  Based on the power expression in equation (6), we need to prove 
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proof can be achieved through mathematical induction and Hölder's Inequality.   
  
 2. Sample Size and Frequency for Repeated Sampling 

SSF provides easy-to-use and instantly displayed calculation of sample size and frequency 
based on a custom-defined scheme of their own choosing. The Configuration Panel allows users 
to input parameter values in calculation of sample size and frequency. The parameters include 
the prevalence, the desired detection time and the desired power of detection. For example, if 
the user specifies the parameter values for detecting a disease onset of prevalence 0.1 within 
14 days with desired power 0.95, combinations of sample size and frequency are instantly 
calculated and displayed in table (Figure 1) or plot (Figure 2). 
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Figure 2. Sample size vs frequency plot in result section. 

 
 

Discussion:   
We have mathematically proved that even allocation of sample size to strata (eg building, pen) 
has the optimal power, among all possible sample allocation strategies. This implies that in 
practice, disease surveillance should not be done by focusing on one or a few second-level 
strata, even if these few strata are randomly chosen. For any given total number of samples, 
sampling as many strata as possible provides the best power for disease detection. 
We have also developed mathematical relationships between the sample size, sample frequency 
and the other parameters in disease detection, ie, the prevalence, the desired detection time 
and the desired power of detection. We develop a web application called SSF (Sample Size and 
Frequency), built upon the Shiny web-application framework. By utilizing the R language and 
the web application framework Shiny, SSF allows for a quick and convinient calculation of 
sample size and frequency in repeated diagnostic testing. It is flexible enough to allow 
investigation of a wide variety of different scenarios with varying prevalence, desired detection 
time and detection power. The application is web-based and easy to use, making the algorithm 
available to practitioners outside the field of statistics. 


